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A time-adaptive reduced order model (ROM) is developed for the electrochemical model for lithium-ion cells derived by Doyle,
Fuller, and Newman (DFN) [M. Doyle, T. F. Fuller and J. Newman, J. Electrochem. Soc., 140 1526 (1993)]. The main advantage
of a time-adaptive strategy is that it does not require a set of full order model simulations to be generated beforehand and, thus, it is
the most cost-effective alternative when no databases are available. However, the reduction of this electrochemical problem
exhibits special features that require ad hoc solutions, preventing the application of generic strategies. This complexity is carefully
analysed, focusing on mode selection, treatment of non-linearities and error estimation. Despite of all this analysis being done for a
pseudo-two-dimensional DFN model, we show that such complexity is intrinsic to the physics of the electrochemical problem,
making the analysis applicable to a pseudo-four-dimensional DFN model, where results prove that the benefits of a reduction in the
number of degrees of freedom are more self-evident. The efficiency, robustness and accuracy of our method are remarkable, as
shown by the macroscopic (cell voltage) and internal (variable distributions) results obtained from the simulation of two different
electrochemical cells under several charge/discharge C-rates.
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List of Symbols

a time-dependant mode amplitude
as active material surface area to volume ratio, m−1

ce lithium-ion concentration in the electrolyte, mol m−3

cs lithium-ion concentration in the active particles, mol m−3

cs,surf lithium-ion concentration at the surface of the active
particles, mol m−3

cs surf, ,max maximum lithium-ion concentration at the surface of the
active particles, mol m−3

De lithium-ion diffusion coefficient in the electrolyte, m2 s−1

De,eff effective lithium-ion diffusion coefficient in the electro-
lyte, m2 s−1

Ds lithium-ion diffusion coefficient in the active particles,
m2 s−1

F Faraday constant, 96485 C mol−1

g time-dependant non-linearity mode amplitude
iapp applied current per cell cross-sectional unit area, A m−2

i0 lithium-ion exchange current density, mol(m2 s)−1

jLi lithium-ion exchange current density between active
particles and electrolyte, mol(m2 s)−1

k0 lithium-ion exchange kinetic constant, m4−3α/(mol1−α s)
L cell thickness, m
La anode thickness, m
Lc cathode thickness, m
Ls separator thickness, m
r* non-dimensional radial coordinate of the active particles
R universal gas constant, 8.314 J(mol K)−1

Rs active particle radius, m
S cross-sectional area, m2

t time, s
t0
+ ionic transference number
T cell temperature, K
Uocv open-circuit voltage, V
x cell thickness coordinate
X snapshots matrix
α cathodic charge transfer coefficient, 0.5
β non-linear function

γ Bruggeman exponent
ε relative error
ε̂ relative error estimator
εe porosity
ϵε̂ relative ROM error estimator tolerance
ϵsvd relative SVD truncation tolerance
η overpotential, V
κ ionic conductivity, S m−1

κeff effective ionic conductivity, S m−1

κD,eff effective ionic diffusion-conductivity, A m−1

ξ non-linearity mode shape
Ξ matrix of non-linearity mode shapes
σ singular value
σeff effective electronic conductivity, S m−1

φe electric potential of the electrolyte phase, V
φs electric potential of the solid phase, V

t
fom
,0χ initial full order model simulation time fraction
fom
t,0

χχ intermediate full order model simulation time fraction of
the initial full order model simulation time fraction

t
romχ maximum reduced order model simulation time fraction
t
rom
,0χ initial reduced order model simulation time fraction

ψ mode shape
Ψ matrix of mode shapes

Across a rapidly growing range of engineering applications,
battery-powered electric devices are becoming a realistic and
competitive alternative to those relying on traditional energy sources
like combustion. This is due to important improvements in the
performance of electrochemical cells arising, in part, from better
design tools, and specially those based on numerical models, aimed
at optimising energy storage and achieving safe charge/discharge
cycles and increasing the battery lifetime, among other objectives.
Understanding and conceiving good design tools requires accurate
first-principle electrochemical models that are capable of describing
not only the output voltage given by the cell, but also the internal
electrochemical state of the battery during the charge/discharge
process.

A good model should accurately predict the performance and
lifetime of the battery cell, reveal its important mechanisms, describe
its main electrochemical processes and indicate how to achieve
optimal performance. In particular, physics-based models thatzE-mail: eduardo.jane.soler@upm.es
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account for the complex electrode microstructures can capture
microscopic effects in detail and are able to describe ion dynamics
in the electrodes.1,2 Some of these models also include degradation
effects, which influence both the local and global behavior of
lithium-ion cells.3 Although they are capable of providing accurate
results in three-dimensional microstructures, microscale models can
be very computationally demanding (a typical time for a simulation
run is about 15 h on a single cluster core4) and can only be used to
simulate relatively small volumes within the electrodes. Therefore,
microscale models are infeasible for systematically optimising the
design and control of batteries through a series of simulations
performed while varying parameters.

Numerical optimisation tasks require reduced macroscale models
that bypass the complexity of the electrode while capturing the
relevant physics of the microscale. Such continuum-scale first-
principle models are obtained, in essence, from averaging the system
of microscale equations over volume. The Doyle-Fuller-Newman
(DFN) model5 is, arguably, the most widely used in this field for the
analysis and control of charging/discharging battery cells and packs.
This approach assumes the one-dimensional transport (along the cell
thickness) of lithium-ions in the electrolyte, with the electrode active
materials being made up of homogeneously distributed spherical
particles of the same average size, in which lithium transport occurs
via diffusion in the direction normal to their surface; they are
therefore also known as pseudo-two-dimensional (p2D) models. The
numerical solution of the p2D DFN model provides very useful
insights on the electrochemical dynamics of the cell. Nevertheless, if
a cell/battery design is to be optimised, a more detailed description is
needed and cell utilization heterogeneities (along the other cell
dimensions) must be captured. The DFN model itself can be easily
extended to consider a three-dimensional cell (leading to a pseudo-
four-dimensional, or p4D, model), but the computational cost of
numerically solving this model is extremely high since suitable
meshes will contain several million degrees of freedom (DOFs).
Even the cell optimisation based on a p2D DFN model can be
computationally expensive if a large number of cell simulations (as
typically required during optimisation) are needed.

Motivated by these difficulties, considerable effort has been
directed toward the development of reduced models that can provide
accurate results in real time, and that may also be used for control
and optimisation purposes. The majority of these models rely on
simplifications of a p2D model through homogenised lithium-ion
transport along the electrodes, such as the well-known Single
Particle model of Refs. 6, 7, or on the efficient treatment of
non-linearities8–11 (and references therein). Alternative approaches
to reducing their computational cost include reduced order models
(ROMs) derived using Galerkin projections based on orthogonal
polynomials.12,13 In all of these published works, the reduction
techniques were applied to previously simplified p2D models and,
therefore, the models are only expected to be accurate in certain
limiting cases. A ROM using a proper orthogonal decomposition
(POD) was first derived from the complete p2D DFN model in
Ref. 14. The obtained results were accurate for moderate applied
current rates (less than 4C). However, the acceleration factor with
respect to the numerical integration of the full order model (FOM),
of about 7, was lower than expected considering the great reduction
in the number of DOFs that was achieved (from 14580 to 200). This
was partly due to the non-linearities that required to reconstruct the
state variables at every iteration of the solver. In Ref. 15, the discrete
empirical interpolation method (DEIM) is applied to the non-linear
terms and the computational cost is reduced by an additional factor
ranging from 2 to 18, depending on the charge/discharge process
considered. The greater the reduction in DOFs of the problem, the
higher the acceleration factor that may be achieved. Thus, in Ref. 16
a ROM based on a collocation method with Chebyshev polynomials
improved computation time by a factor of 20 to 50 as compared with
the finite elements model describing the electrochemical processes in
the electrodes, coupled to the electrothermal effects occurring in the

two-dimensional current collectors. The speed-up factor achieved in
a POD-DEIM ROM applied to a full microscale model may reach a
factor of 120.4

Using the techniques described above, the electrochemical cell
simulation using a ROM can be significantly accelerated when
compared to the simulation using the original numerical model.
However, this fact cannot hide that a large computational effort must
be done in order to prepare the ROM. In particular, the FOM must be
solved many times in order to setup a numerical solution database
from which information to build the ROM is extracted. The size of
such database strongly influences the performance of the derived
ROM. With cell optimisation in mind, this solution database should
conveniently cover all the design parameter space. The generation of
such database can then involve a huge computational cost and,
although cell optimisation itself (using the derived ROM) is
significantly accelerated, the whole optimisation process (including
ROM preparation) may result unaffordable.

The above mentioned difficulty is shared by any pre-processed
ROM. In order to overcome this severe drawback, a time-adaptive
ROM could be considered. Under this approach,17 no database is
required and the information from the original numerical model is
instead extracted using an on-the-fly technique. The numerical
solution using the original FOM is computed along some time
periods during the cell simulation and a ROM is built using the
information provided by such solution. An error estimation for the
ROM solution can also be implemented in order to detect if more
information (from the original FOM) is needed in order to improve
the ROM, and an update algorithm is used to derive a new ROM
combining all the available information. With such adaptive ROM
technique, the speed-up of a cell simulation can be moderate (it will
be bounded by the fraction of time the full numerical model is used
to simulate the cell performance) but, since no database is needed,
the overall reduction of the computational effort can be very
significantly improved in comparison with pre-processed ROM
techniques. The comparative advantage of this time-adaptive ROM
strategy can be understood considering a simple scenario in which a
pre-processed ROM is used during cell design, where 5 cell design
parameters are taken and 20 different cell selections are analysed.
Calling tFOM the computational time for a single FOM simulation
and assuming an acceleration factor of fp−p = 20 (as presented in
Ref. 15) for the pre-processed ROM, the initial cost of exploring the
design parameter space taking only 4 values for each parameter
using the FOM would be 45 · tFOM = 1024 · tFOM. Thus, the total
computational time to analyze the 20 cell selections using the pre-
processed ROM approach would be (1024+ 20/fp−p) · tFOM =
1025 · tFOM. The time-adaptive ROM strategy presented in this
manuscript can achieve acceleration factors of ft−a ∼ 10 (as it is
shown later in this text), but a more conservative speed-up factor of
f 4t a′ =− can be considered. In this case, the analysis of 20 cells
would only require a computational time of f t t20 5t a FOM FOM( ′ )· = ·− ,
resulting 205 times cheaper than the pre-processed approach. Hence,
the use of a time-adaptive strategy is a more suitable way to assess cell
design optimisation problems, particularly using p4D DFN models,
which would otherwise require vast computational resources.

The goal of this paper is to explore the application of time-
adaptive ROMs to the solution of the DFN model, adapting some
ideas from Ref. 17. Several difficulties must be overcome in order to
extend such ideas from a single partial differential equation to a
complex system of partial differential equations. Those difficulties
are mainly related to mode selection, treatment of non-linear terms,
solution stability and error estimates. Finally, although the aim of
such acceleration techniques is the solution of p4D DFN models, for
the sake of simplicity the discussion is done using the p2D DFN
model.

The remainder of this paper is organised as follows. First, the
p2D DFN model is presented in its variational form, introducing the
general characteristics of the function space in which the ROM
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solution will be found. Then, the time-adaptive ROM is described,
emphasising on its formulation, the selection of an appropriate basis
for the function space of its solution, the solvability and numerical
stability of the resulting system of equations, error estimation and
the adopted time-adaptive strategy. Next, results of the proposed
time-adaptive ROM are shown for two different electrochemical
cells, both consisting of graphite (G) anodes in combination with
lithium nickel manganese cobalt oxide (NMC) and lithium iron
phosphate (LFP) cathodes, under various charge/discharge rate
scenarios (including a hybrid load cycle) of up to 5C.
Additionally, results of a p4D time-adaptive ROM implementation
are presented to further justify the validity of the analysis carried out
using the p2D model. Finally, conclusions are derived from the
analysis of the proposed model and its performance.

Model for a Lithium-ion Battery Cell. Variational Formulation

The model considered in this work is a p2D DFN model,
consisting in a system of nonlinear partial differential equations
describing the one-dimensional dynamics for electric charge in the
solid phase and ionic charge and mass transport in the electrolyte
phase along the cell thickness (x), as well as mass transport within
the solid phase, which is represented in each electrode by homo-
geneously distributed spherical particles (with radial coordinate r) of
the same radius Rs (see Fig. 1). A brief summary of the governing
equations and their corresponding boundary conditions is given in
Table I. We refer the interested reader to Ref. 5 for more detail.

Regarding the equation describing charge conservation in the
solid phase, note that in addition to the boundary conditions imposed
on the flux of solid phase potential, φs, a reference value must be set
(for instance 0s x 0ϕ ∣ == can be imposed, but other alternatives are
also used in practice) for the equation to have a unique solution.

The numerical implementation of the full electrochemical p2D
model is carried out using the finite element method (FEM), which
requires defining the weak (or variational) form of the system of
equations. In order to obtain the variational formulation of a system of
PDEs (see, for example, Ref. 18), each equation has to be multiplied by
a test function v lying in some Sobolev space V and then integrated over
the corresponding domain Ω, performing integration by parts on the
terms with second-order derivatives and taking into account the
boundary conditions of the problem. After some algebra, the variational
form of the p2D DFN system results in the following expressions:

• Charge conservation in the solid phase,

x

dv

dx
dx a Fj v dx i v . 1eff

s
s Li app x L∫ ∫σ
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x

c

x

dv

dx
dx a Fj v dx

ln
0. 3eff

e
D eff

e
s Li,⎜ ⎟⎛

⎝
⎞
⎠

∫ ∫κ
ϕ

κ
∂
∂

+ ∂
∂

− = [ ]
Ω Ω

• Mass conservation in the electrolyte phase,

c

t
v dx D

c

x

dv

dx
dx

a t j v dx1 0. 4

e e
e eff

e

s Li

,

0

∫ ∫
∫

ε∂( )
∂

+ ∂
∂

− ( − ) = [ ]

Ω Ω

Ω
+

• Butler-Volmer kinetics,

j v dx f v dx. 5Li jLi
∫ ∫= [ ]

Ω Ω

Since mass conservation in the solid phase (see Table I)
introduces the pseudo-dimension r, the variational form in Eq. 2,
which has been written using the non-dimensional radial coordinate
r*= r/Rs, requires the integration along the domains 0, 1rΩ = [ ]*

and Ω using the test function v x r H, r
1( *) ∈ (Ω × Ω )* . Note that the

lithium-ion exchange current density, jLi, is considered as a problem
variable, which simplifies the extension of this model to include
solid-electrolyte interphase (SEI) formation phenomena.

The variational problem formed by Eqs. 1–5 is continuous and
defines the solution u(x, r∗, t)= {φs(x, t), cs(x, r∗, t), φe(x, t), ce(x, t),
jLi(x, t)} in a infinite dimensional function space, as in the original
problem. However the continuity requirements of u in the variational
problem are weaker, which has practical consequences as the use of
piecewise continuous polynomial function spaces. Thus, the finite
element method finds an approximate solution of 1–5 in a discrete
(finite-dimensional) function space Vh, a subspace of the infinite
dimensional function space V in the variational problem. Since the
Galerkin method will also be used in the derivation of the ROM, a
second function space Vĥ will be built. Such function space Vĥ will
be, in turn, a subspace of Vh with, hopefully, a much smaller
dimension.

Time-Adaptive ROM

This Section is devoted to the derivation of a time-adaptive ROM
from the electrochemical problem 1–5, starting with the formulation
of the ROM, addressing its solvability and error estimation, and
finally defining the adopted time-adaptive strategy.

ROM formulation.—The proposed ROM is based on the
Galerkin method. Thus, the variational form previously described
is used and only the function space Vĥ must be specified. In order to
build this space, the well known POD method is used. Here we just
summarise the main results of this technique, referring the reader to
Ref. 19 and references therein, for a detailed description of the
method.

The procedure starts by finding a low-dimensional set of basis
functions in the L2-Hilbert space, that contain the relevant dynamics
of the FOM. Following the snapshot method,20 first we consider the
set of snapshots which may be given by the solution of the full
problem (or other data sets) at N instants of time,

Figure 1. Scheme of a p2D cell model.
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Then, the so-called POD-modes can be efficiently computed from
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the snapshots matrix X u u, , N
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uk correspond to distributions of M-nodal values along the spatial
coordinates of a variable (or a non-linearity) over N time steps,
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where the columns of the matrices M NΨ ∈ × and N NΦ ∈ × are the
(economy-sized, assuming N<M) left and right singular vectors of
X, respectively. The matrix N NΣ ∈ × is a diagonal matrix and its
elements, called singular values, are sorted in descending way as,
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can be defined, containing only the left singular vectors associated to
the n largest singular values and providing an orthonormal basis that
gives a low-dimensional representation of the snapshot data. As shown
in Ref. 19 (and references therein), POD-modes provide the best
approximation of the snapshots 6, among all expansions with n terms,
minimising the root-mean-squared error when reconstructing the N
snapshots after truncations to n. Thus, the accuracy of the approxima-
tion is directly related with the number modes ψn that are considered
and their corresponding singular values σn, which measure the
relevance of such modes in the dynamics defined by the snapshots.

The solution of the FOM can now be projected onto the POD
manifold (using the L2-inner product) to obtain,
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solve 1–5.

Thus, applying the snapshot method described above to the
solution of the electrochemical model in Table I, we obtain the
associated POD manifold and the following expansions for the
variables of the problem are considered:
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Table I. Electrochemical p2D DFN model.5
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In order to solve cs along the non-dimensional form of the
pseudo-dimension, r∗, the proposed FOM uses a pseudo-spectral
method based on even order Legendre polynomials, which already
constitutes a significant reduction in DOFs with respect to the system
that would result of applying the finite element method. Thus, the
same Legendre polynomials are also used when building the ROM to

describe cs, denoted as ri
rψ ( *)* with i N1, , r= ⋯ ∗. Tcs is a three-

dimensional tensor containing the set of i
rψ

∗
Legendre polynomials

and i j
c
,
sψ modes, which are obtained by performing a single SVD on a

snapshots matrix formed by all a x t,i ( ) Legendre polynomial
coefficients, where the distributions along x of each coefficient are
concatenated in every column. This SVD results in a single set of Ncs

modes to represent all the coefficients, which can be handled
separately (undoing the concatenation of their components and
leading to N N

c
r cs
sψ ×∗ modes) in the ROM implementation but will

share the same time-dependant amplitudes a tj
cs ( ) with j N1, , cs= ⋯

when performing the Galerkin projection. The system of equations
that has to be solved to obtain the amplitude vectors, ta

s
( )ϕ , tacs( ),

ta
e
( )ϕ , tace( ), and ta jLi

( ), results from applying a POD-Galerkin
projection to the system of governing equations shown in Table I.
The obtained ROM is given by a system of differential algebraic
equations,
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For the sake of brevity, only the non-linear terms of the system

c

h

e
β̃̂ and j

h

Li
β̃̂ are detailed in this text, while the matrices involved in

the linear part of the expressions are given in Appendix A.
Since the time integration of the p2D ROM is performed using an

implicit Euler method, the non-linearities present in the model imply
that a non-linear system has to be solved in each time step. In order
to capture more accurately the non-linear dynamics of the problem,
every non-linearity is represented by a specific set of POD-modes ξi,
obtained via the truncated SVD of the snapshots matrix of the
corresponding non-linearity (computed using the FOM solution).
Therefore, the non-linearities are approximated as follows,
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The system of non-linear equations is solved using the Newton
method, which requires the computation of non-linearities as well as
their derivatives in each iteration and at every node of the discretised
domain. These calculations represent the main computational bottle-
neck when solving the ROM. Therefore, the DEIM is used to
interpolate the non-linearities and their derivatives from a set of pre-
selected DEIM points, xk, to the rest of the domain, having the
general form

x t x t g t x
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where tilde symbol ∼ denotes evaluation of the given expression,
vector or matrix at the xk DEIM points. This technique is applied in
pre-processed ROMs (see, for instance, Ref. 15) in order to
significantly reduce the computational cost of the ROM integration.
Since most electrolyte transport properties are concentration-depen-
dent, many other non-linearities can arise in the DFN model. Taking
into account that treatment of such non-linearities is exactly the same
and the qualitative behavior of the resulting ROM is not affected,
those non-linearities have been neglected in this work for the sake of
simplicity.

Following this procedure, the selection of the POD-modes is
straightforward once the low-rank truncation of the left singular
vector matrices that result from the computations of SVDs is done.
The simple approach to select the number of modes, n1, that is
commonly used to describe a given variable (or non-linearity) in the
ROM consists of the definition of a tolerance ϵsvd such that

n imin . 12
i N

i
svd1

1 1

⎧
⎨⎩

⎫
⎬⎭

σ
σ

ϵ= < [ ]
⩽ ⩽

The value of this tolerance is directly related to the precision with
which the complete set of N snapshots can be reconstructed using the
n1 modes resulting from the truncation of the SVD. Nevertheless, the
electrochemical cell model exhibits special features which make
essential to conduct the modes selection more carefully.

Selection of POD-modes.—This Section is devoted to high-
lighting the main characteristics of the electrochemical p2D model
that prevent the use of a standard SVD truncation 12 to get the
minimum number of modes required to describe the dynamics of the
system with sufficient accuracy. For the sake of clarity, our
discussion is built around a baseline case corresponding to a 0.5C
full discharge of a G-NMC cell. Additionally, to demonstrate the
robustness of the method, results corresponding to a G-LFP cell will
also be shown.

The parameter values necessary to build the electrochemical
models of both cells are given in Tables B·1 and B·2 of Appendix B.
Regarding the discretisation of the cell domain for both FOM and
ROM, each subdomain (anode, separator and cathode) is formed by
30 P1 elements (with linear functions as basis functions and their
nodes as DOFs) of the same size, thus having a total of 91 nodes. In
all results shown in this work, the numbering for both elements and
nodes starts at 0 and increases along the x axis following the cell
arrangement depicted in Fig. 1.
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Now, we start by noticing that using the first singular value as a
reference to decide the number of modes to be might lead to an
insufficient representation of some of the variables, since the value
of σ1 is related to the order of magnitude of the data in the snapshots,
while the values σ2, σ3,…,σn are related to the order of the
fluctuations around the mean field that their corresponding modes
represent. Therefore, a very fast initial decay in the singular values
can be observed for variables whose solution exhibits relatively
small fluctuations around their mean values, such as φs and ce.
However, these fluctuations may be relevant to the solution of the
system and therefore require a sufficiently accurate representation in
the ROM set of modes. Moreover, the fact that the modes are
extracted from snapshot matrices that contain the solution of the
FOM along various domains, where the order of magnitude of the
variables of the problem might differ significantly, can also imply
that the first modes contain more information about the solution on
the subdomain with a greater average value.

Such behavior, typically observed in the modes extracted for φs
when the anode and cathode materials have different open circuit
voltage (OCV) characteristic values and/or capacities, is shown in
Fig. 2, where the fourth singular value drops by over 6 orders of
magnitude with respect to the first one (Fig. 2a) and the first four
modes exhibit small perturbations around the mean value for φs in
the anode (distinguishable in Fig. 2b only for the third mode and
above).

Thus, establishing a truncation tolerance of ϵsvd = 10−6 would
result, according to 12, in the use of 3 modes for φs, with none of
them containing information that captures the relevant fluctuations in
the anode, which are essential for the accurate representation of the
FOM solution.

Furthermore, the electrochemical p2D model is characterised by
the strong dependence of its dynamics on the non-linear function
j f c c, , ,Li j s e s eLi

ϕ ϕ= ( ), which acts as either a source term or a
boundary condition in all the system equations. Thus, the changes on
the SVD truncation tolerance for a given variable will not necessa-
rily correlate with the changes in the ROM solution error with
respect to the FOM solution on that particular variable. Moreover,
special attention must be paid to the fact that jLi ∝ eη, with
η= φs− φe − Uocv, which implies that infinitesimal fluctuations in
η may generate effects of a magnitude order of one in jLi. Therefore,
φs and φe have to be approximated with greater precision than jLi to
achieve a desired error in the reconstruction of the latter variable.

Concerning the proposed FOM, as mentioned above, we use a
pseudo-spectral method (based on Galerkin projection) with Nr*
even order Legendre polynomials to solve cs along the radial
coordinate r∗. Hence, as previously introduced in Eq. 10b, results
for this variable are given in the form of space and time distributions

of Legendre polynomial coefficients a x t,i
r ( )* with i N1, , r= ⋯ ∗,

which can then be used to obtain the cs distributions along r∗ for any
given value of x and t. The constant term associated to the zero order

Legendre polynomial a r
0

* represents the average cs value, while
higher order terms are used to represent fluctuations along r∗. In the
proposed ROM, the POD-modes used to represent the space

distributions of ai
r* coefficients are obtained using a combined

modes strategy, where a single SVD is computed on a matrix formed
by snapshots of all Nr* coefficient distributions concatenated. In this
case, it must be taken into account that the decrease of the associated

singular values will be mainly driven by the a r
0

* component of the
snapshots due to its higher characteristic value. Although this
combined modes strategy presents the mentioned feature and
requires careful analysis, it has been chosen over an independent
modes approach to reduce the overall computational cost and avoid
the fast-increasing number of DOFs in the ROM, since the latter
strategy would require the computation of Nr* SVDs and each

Legendre polynomial coefficient ai
r* would be represented by its

own set of modes and time-dependant amplitudes to solve.

Moreover, note that the lithium exchange current at the surface of
the active particles, jLi, defined in Table I, shows the most complex
distributions along the x dimension, and therefore, requires a higher
number of modes than the other system variables in order to
reconstruct it with sufficient precision. Hence, considering that the
proper verification of the boundary conditions of the equation of
mass conservation in the solid phase along x requires an accurate
calculation of high order Legendre polynomial coefficients, the
number of modes containing relevant information on the r 2* term in
cs has to be similar to the one required for jLi in order for the ROM to
work correctly, necessarily leading to the definition of a more
restrictive SVD truncation tolerance for cs.

Taking into account all this information, a truncation criterion to
consider the relevant fluctuations in the dynamics is proposed,

n imin . 13
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⎧
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σ
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Similarly to 12, the criterion 13 also sets relative singular values but
with respect to the second one, σ2. Figure 3 shows the relative
singular values of all the system variables, computed following the
above described criterion for a truncation tolerance of ϵsvd = 10−6.
The ones corresponding to variables φs, φe and ce show a faster
decay due to the already mentioned characteristic of their solution
along the cell, while the more complex distributions of cs and jLi
result into a significantly greater number of modes for the given
truncation tolerance.

The fact that the truncation criterion used to select the number of
modes to build the ROM 13 computes relative singular values with
respect to σ2 might cause discrepancies between the defined
truncation tolerance ϵsvd and the relative error of the ROM solution
with respect to the FOM solution. Therefore, it is convenient to
study how much can this number of modes be reduced while

Figure 2. (a) Relative singular values of φs modes with respect to the first
one, 1

sσ ϕ . (b) First four mode shapes of φs.
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maintaining the ROM relative error with respect to the FOM solution
under a given threshold, ϵerr. A detailed study of the case can be
conducted using several pre-processed models, starting from the one
proposed by the ϵsvd criterion and gradually reducing the number of
modes in every variable and non-linearity until a given maximum
relative error threshold, ϵerr, is reached. Table II shows the number
of modes selected, nerr, following this procedure for ϵerr = 10−3,
under several C-rates and for two different cells, G-NMC and G-
LFP. As it can be seen, the minimum number of modes nerr
associated to each problem variable corresponds to a different
SVD truncation tolerance ϵsvd. Consequently, obtaining a good
approximation of the solution below an established error threshold
requires considering a different number of modes, nerr, to describe
each variable, which turns out to be weakly dependent on the C-rate
and the selected chemistry. Therefore, the main conclusion that can
be drawn from this analysis is that the truncation criterion 13 is
capable of retaining small fluctuations, which may be relevant to
obtain accurate results, although determining the optimal number of
modes requires the definition of different SVD truncation tolerances
for each variable.

Some remarks concerning the selection of modes for the
exchange current jLi.—In addition to the guidelines on mode
selection provided in the previous section, some care must be taken
concerning the use of mixed finite element techniques in the FOM

and its effect on the derived ROM, taking into account that these
schemes are known to produce numerical instabilities in some cases
(see Ref. 21). In this particular case, such formulation results from
the introduction of jLi as an additional variable in the model, which
is, as previously observed, quite convenient. Furthermore, in some
cases a Lagrange multiplier could be introduced in the FOM in order
to provide a reference for the electric potential, imposing a zero
mean value for the electrolyte electric potential. The use of a mixed
finite element formulation and the mentioned Lagrange multiplier
lead, in both cases, to saddle point systems where well-posedness is
not directly inherited by the discretised problem and can be a source
of numerical difficulties in the ROM.

Considering the variety of ways in which a potential reference
can be set in the FOM, it would be advisable to derive a ROM that is
not affected by the particular choice made in the FOM implementa-
tion. If, for instance, the potential reference is imposed assigning a
zero value to the electric potential in the electronic phase φs at one
collector, the corresponding modes will inherit this property (since
modes are extracted as linear combinations of observed fields) and
there is no need to impose any additional condition in the ROM. It
would be convenient to assume as well that the modes themselves
provide a reference for the electric potential, avoiding any additional
equation, when the reference is imposed through a Lagrange
multiplier in the FOM to have a zero mean value for φe. It must
be observed that the Lagrange multiplier in the FOM will correct the
approximation of the exchange current jLi in order to enforce the
discrete version of the solvability condition

j dx j dx 0.
L

Li
L L

L

Li
0

a

c
∫ ∫+ =

−

In the absence of this Lagrange multiplier in the ROM (under the
proposed approach, where no additional equation will be added in
the ROM in order to impose a reference for the electric potential,
independently of the particular technique used in the FOM to impose
it) the solvability of the electric potential in the derived ROM is not
automatically guaranteed. In practice, however, usually this is not a
problem provided similar quadrature formula are used in FOM and
ROM. Nevertheless (see below) the correction in jLi could have a
relevant effect.

Lets consider now the approximation of jLi in the mixed finite
element formulation. It is well known (see Ref. 21) that numerical
instabilities can arise in this kind of approximations if selection of
finite element spaces do not satisfy a particular condition (known as
inf-sup or LBB condition) related to the inversibility of the discretised
operator. The violation of this condition leads to the presence of
spurious components in the solution. In practice, the mixed finite
element solution of the DFN model using P1 elements does not lead to
such kind of instability. In contrast, the derived ROM could exhibit
some numerical instability associated to the (almost) singularity of the
discretised operator. Unsurprisingly, the selection of modes for jLi and
numerical quadrature schemes can have a strong effect on this
behavior. These aspects are shortly considered below.

It must be taken into account that modes for the exchange current
jLi can be obtained from two sources: the variable jLi in the (mixed
finite element) FOM itself and the evaluation of the Butler-Volmer
kinetics expression at the interpolation nodes using the remaining
variable fields, leading to a second vector f jLi

. Regarding the solution
of Eq. 5, the error between vectors jLi and f jLi

has two components,
which are associated to:

(a) The value of the residual of the equation after the non-linear
system has been solved.

(b) The difference in the numerical integration schemes of the terms
associated to jLi and f jLi

.

The variable jLi in the FOM is decomposed as a linear combination
of FEM piecewise-linear basis functions, being the weights of that

Figure 3. Relative singular values with respect to the second singular value,
σ2 of all p2D variables extracted from the (a) G-NMC and (b) G-LFP 0.5C
full cell discharge snapshot matrices. The values showed in both legends
correspond to the number of modes retained, n2, for an SVD truncation
tolerance of ϵsvd = 10−6 according to criterion 13.
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linear combination the nodal values of jLi. If the same numerical
integration scheme is used for the terms associated to jLi and f jLi

, and
the latter non-linear term is approximated in the same exact way as jLi
(i.e., as a linear combination of FEM piecewise-linear basis functions
where each weight corresponds to nodal values of the non-linear
function), the error between the two sets of nodal values can only be
attributed to (a), which will generally be small compared to the
characteristic value of jLi. However, if a different numerical integration
scheme is used to compute the terms associated to f jLi

and/or this non-
linear term is not approximated in the same way as jLi, part of the error
between the two sets of nodal values is then a consequence of (b). In
fact, this error may significantly increase when the case that is being
solved has a strong non-linear behavior in the variable jLi. This occurs
when the gradients of the variables of the problem are high, what is
typically caused by a strong demand of the cell electrical current, a
highly unbalanced cell in terms of electrode capacities (which can
result in higher exchange current gradients on the electrode with the
smaller capacity for a given applied current), or very non-linear
distributions of electrochemical properties along the cell.

Once that it has been established that differences between the
nodal values of the jLi variable returned by the FOM and the
reconstructed nodal values of f jLi

for the solution of the same system
might be significant, the question of what impact do these
differences have on the solution of the ROM arises. The proposed
p2D ROM considers that both jLi and f jLi

, as well as the rest of
variables of the problem, are piecewise-linear functions. The use of
the DEIM technique to reduce the computational cost associated to
the evaluation of f jLi

term implies the definition of a set of modes

used to describe it. As a result, the discrete block operator Bj
j

Li
Li (see

Appendix A for detailed description) introduced in Eq. 11e, resulting
from linearisation in the ROM and associated to discretisation of
Butler-Volmer kinetics and exchange current components, will
depend on the selection of the mode source as well as on the details

of the DEIM technique. Significant variations of the Bj
j

Li
Li matrix

conditioning can arise depending on the selection of the mode source
used to represent the variable jLi and the non-linear field f jLi

in the
ROM: left singular vectors from the matrix jLi

Ψ or from the matrix

f jLi
Ψ . This is observed when the manifolds associated to two different

sets of modes begin ceasing to be close, which seems to occur
approximately for the mode î , when

X X

n
, 14i

j f

s

2Li jLiσ ∼
∥ − ∥

[ ]ˆ

where X jLi
and X fjLi

are the snapshots matrices of jLi and f jLi
,

respectively, and ns is the total number of mesh nodes corresponding
to the subdomains where these fields are defined.

Figure 4a shows the evolution of singular values for both jLi and
f jLi

for the baseline case, where the estimate of iσ ˆ points out that the

divergence in mode shapes approximately starts at i 24ˆ = .
Figure 4b, on the other hand, illustrates how the conditioning of

the ROM matrix Bj
j

Li
Li , steeply increases when the number of modes

used is greater than î for the case in which different sets of modes
are used to represent the variable jLi and the non-linear field f jLi

in
the ROM. Note also that if the same set of modes is used to describe

both terms, the conditioning of the Bj
j

Li
Li matrix remains low and

stable for any given number of modes and the ROM will converge to
a solution. Nevertheless, the use of the jLi

Ψ modes results in a
solution of lower quality, since these modes (in the case that is being
discussed) are obtained from the solution of the system using a
higher order numerical scheme to integrate the non-linear term f jLi

.
In the ROM, this last term, as well as its derivatives with respect to
the rest of the variables, are evaluated at the DEIM points (which are
mesh nodes) and integrated using exact schemes after assuming that

f jLi
is piecewise-linear. Therefore, the modes jLi

Ψ reconstruct the j

h

Li
β̂

vector with less accuracy than the f jLi
Ψ modes.

The possibly existing differences in the regularisation of the non-
linear term f jLi

between the FOM and the ROM also account for the
worse behavior of the model when the jLi

Ψ modes are used.
Consequently, the use of the f jLi

Ψ modes to describe both jLi and f jLi

constitutes the most robust approach to solving the ROM, although the
quasi-singularity of the ROM discrete linearised operator cannot be
completely ruled out and spurious components could in principle arise
during the ROM time-integration. A general technique to ensure the
numerical stability of ROMs derived from mixed finite element
approximations of the DFN model would be highly appreciated.

Error estimators.—As previously explained, the assessment of
the ROM accuracy is a key ingredient in time-adaptive ROMs. A
first approach, proposed in Ref. 17, consists in the use of local
residuals. In particular, FEM residuals are being considered here in
order to obtain a measure of the error made by the ROM. The system
formed by Eqs. 1–5, which constitutes the variational form of the
DFN model, leads after time-discretisation to a problem that can be
written with the general form

Table II. Minimum number of modes nerr and associated SVD tolerance ϵsvd for a pre-processed ROM simulation of the G-NMC and G-LFP cells at
the indicated rates of charge (negative) and discharge (positive), obtained imposing a maximum relative error threshold of ϵerr = 10−3 with respect to
a reference FOM solution.

0.5C 1.5C −0.5C −1.5C

nerr ϵsvd nerr ϵsvd nerr ϵsvd nerr ϵsvd

φs G-NMC 4 3.0894 · 10−3 4 2.6947 · 10−3 4 2.3874 · 10−3 4 2.6432 · 10−3

G-LFP 5 4.1557 · 10−3 5 3.2891 · 10−3 5 3.5650 · 10−3 4 7.6066 · 10−3

φe G-NMC 5 1.3682 · 10−3 7 9.5250 · 10−4 5 5.5267 · 10−4 8 1.4132 · 10−4

G-LFP 8 1.9524 · 10−4 8 3.6867 · 10−4 8 1.6709 · 10−4 8 1.5894 · 10−4

ce G-NMC 9 1.1109 · 10−4 9 1.1417 · 10−4 10 1.6338 · 10−4 11 2.3153 · 10−4

G-LFP 11 1.2239 · 10−4 12 9.7804 · 10−5 10 1.8977 · 10−4 10 2.1421 · 10−4

cs G-NMC 10 2.1014 · 10−5 11 4.5593 · 10−5 12 1.3800 · 10−5 17 3.9407 · 10−5

G-LFP 15 2.6290 · 10−5 14 7.3666 · 10−5 15 2.6099 · 10−5 13 4.8276 · 10−5

jLi G-NMC 25 8.5175 · 10−5 28 5.8822 · 10−5 26 8.4710 · 10−5 29 6.1781 · 10−5

G-LFP 34 3.8765 · 10−6 40 1.7321 · 10−6 38 4.7198 · 10−6 41 4.4376 · 10−6
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Find such that
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∈
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where u and v are the solution and test function vectors in the vector
space V, respectively, and B( · , · ), N( · , · ) and L( · ) are bilinear,
non-linear and linear forms (defined either on the vector space V or
on V× V), respectively. A residual vector of the system for a given
approximation to the solution Vû ∈ can then be assembled using

L B Nr v u v u v, , 16u v, = ( ) − ( ˆ ) − ( ˆ ) [ ]ˆ

with v stepping through a suitable collection of functions V̂ . The
computation of the system residuals for a given solution is explicit
and only requires choosing the set V Vˆ ⊂ of test functions. It should
be remarked that the implemented ROM (based on the Galerkin
method, consisting in replacing V by Vĥ with V V Vh h

ˆ ⊂ ⊂ in 15)
would make residuals defined by 16 virtually zero if v is taken in Vĥ.
Residuals corresponding to functions v outside Vĥ instead will
provide information on the accuracy of û.

In the case of the proposed ROM, an alternative to build V̂ could
be the gathering of a set of Lagrange basis functions associated to a
selection of interpolation nodes in the finite element discretisation.
This proposal seems suitable since the numerical integration of the

resulting expression is computationally inexpensive (still having
V Vˆ ⊂ ) and clearly provides local information.

However, the highly non-linear coupling between partial differ-
ential equations, the presence of a subscale associated to the particle
radius and the multi-region nature of the problem prevent the
correlation of local errors with residuals, as it is done in Ref. 17
through a calibration process for a single scalar partial differential
equation. Moreover, the residual values can overestimate the error
made by the model at those mesh nodes where natural boundary
conditions have been imposed in the weak form of the system.
Figure 5 depicts this behavior comparing, for the 0.5C discharge of
the G-NMC cell, the relative error between the φs solution of a pre-
processed ROM and the analogous FOM with the relative FEM
residual of the φs equation computed using the ROM solution. The
pre-processed ROM, in this case, has been built only with the initial
5% snapshots of the FOM solution in order to emulate the behavior
of the initial ROM stage of a time-adaptive ROM strategy (which is
described in detail below). For the results shown in Fig. 5a, residuals
have been computed with v stepping through the whole FOM
function space, thus having V Vh

ˆ = and being able to represent the
resulting residual vector as a nodal distribution for the corresponding
solution at the given time. On the other hand, Fig. 5b represents the
evolution in time of a single residual value, computed with V̂ only
being the basis function of the FOM function space Vh corre-
sponding to the given mesh node. The vertical red dotted lines in
Figs. 5a and 5b indicate the mesh node and time step for which the
time and space distributions are given, respectively. The space
distributions at approximately half of the discharge cycle clearly
show how the FEM residual does not accurately represent the drop
in the error at the anode current collector due to the fact that it does
not have any information on how both ROM and FOM impose the
same reference φs value at this node. Additionally, the residual space
distribution shows a much more oscillatory behavior than the one of
the actual error, with peak minimum values that represent drops of a
couple orders of magnitude with respect to their mean value
(particularly in the cathode of the cell). Regarding the time
distribution for a node at the centre of the anode, there is some
coherence between the residual and error evolution, with a slight
increase in the gap between them as the simulated time increases
and, again, a more oscillatory behavior of the residual curve.

Thus, although these FEM residuals provide some qualitative
information concerning ROM errors, they cannot be calibrated in
order to be used as an error estimator to be included in an automatic
ROM-adaption device. In addition, given the selection of V̂ specified
above, the computed residuals provide information related to the
error with respect to the FOM solution and not to the true solution of
the DFN model which, in combination with an estimation of the
approximation error of the FOM, could be very useful to establish
automatic criteria on the error estimator thresholds of the time-
adaptive ROM. In order to overcome these difficulties, it is
convenient to compute directly error estimators for each one of the
variables of the problem. To this end, implicit a posteriori error
estimators of the FEM22 for the DFN model can be implemented
which, as it will be shown, are precisely based on the computation of
some residuals. To obtain these estimators, a linearisation of the
problem 15 must be derived. Let such linear problem, in variational
form, be written as

V

B L V

u

u v v v

Find such that

, , 17
e

e

∈
ˆ ( ) = ˆ ( ) ∀ ∈ [ ]

where ue is the exact solution of the linearised problem. The error
associated to û, defined as e u ue= − ˆ , thus verifies

B B B

L B

e v u v u v

v u v

, , ,

, , 18
e

ˆ ( ) = ˆ ( ) − ˆ ( ˆ )
= ˆ ( ) − ˆ ( ˆ ) [ ]

Figure 4. (a) Singular values evolution of jLi and fjLi
. (b) Conditioning

number of the ROM matrix Bj
j

Li
Li as a function of the number of modes used

for different combinations of the modes used to describe the variable jLi and
the non-linearity fjLi

. Building such matrices involves, in each case,
projecting one set of modes onto the other.
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which defines the linear problem to be solved in order to compute e.
In this particular case, in order to obtain a linear system of general
form 17 from the non-linear system 15, a first order Taylor series at
the obtained solution û is used for all the system non-linearities. It
must be remarked that this linearisation results in the right hand side
or source term of the error system 18 matching the residual of the
system for that solution, ru v,ˆ , and the first order derivatives of the
non-linearities with respect to the variables of the problem being
included in the bilinear form associated to the error vector, B e v,ˆ ( ).

The error system 18 can be solved globally (at the whole cell
domain) or locally (at a previously selected number of elements).
The first option has a computational cost of the same order of
magnitude as the one of solving the FOM for each time step,
although smaller since the resulting problem is linear and Newton
(or the selected numerical scheme) iterations are not needed. The
latter option is optimal for the ROM implementation due to its low
computational cost, especially when compared to the first option.
However, solving the error system locally requires the definition of
additional natural (Neumann) boundary conditions at those element
boundaries that do not intersect with any exterior or interior
subdomain boundaries of the cell domain. This problem is solved
by approximating the flux at the boundaries of each selected element
K using the solution for which the error is being estimated at K and
its neighbouring elements J,

u
n

n u u
1

2
, 19

K J
K J K J∇ ∇∂

∂
≈ ⋅ {( ˆ) + ( ˆ) } [ ]

∩
∩

thus introducing a relevant source of uncertainty. To address this
issue, the ratio between the solutions of the global error system and
the local error system at a given K element for the initial time step,
e K0∣ and eK,0, respectively, can be computed and used as a correction
factor for local error estimators,

f
e

e
.e

K

K

0

,0
K,0

= ∣

Figure 6 shows how, for a given mesh element in the centre of the
anode (K= 15), the agreement between both global and local
(corrected) error estimators and the actual error between the ROM
and the reference FOM solution for the case introduced earlier in this
Section is much better than the one of the equation residuals, both in
terms of order of magnitude and evolution in time. It can also be
seen that, as expected, the global error estimator gives a better
approximation of the actual error than local error estimator and both
of them become less accurate as the model is further integrated in
time.

Once the suitability of local error estimators for the role of time-
adaptive ROM error estimators has been determined, the dependency
of the values and evolution of the final error estimator of each
variable on the chosen set of elements K can be mitigated by
introducing a new correction factor that directly relates them to a
single global measure of the global error estimator at the initial
ROM simulation time

f
e n

e
,

K

0 2

,0
K,0

= ∥ ∥
ε̂

with n being the number of mesh nodes in which the error is defined.
Note that this correction might lose its validity as the ROM
integrates further in time and has to be updated at every ROM
adaption stage of the time-adaptive algorithm. All the NK corrected
local error estimators can be averaged, having the final expression
for the error estimator ε̂ of any given variable of the time-adaptive
ROM strategy

N
e f

1
. 20

K i
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i Ki,0
∑ε̂ = [ ]ε
=

ˆ

Concerning the determination of the elements in which the local
error estimators are computed, three different approaches have been
considered:

• The use of elements associated to DEIM points, used by the
ROM to compute all the non-linearities of the system (and their
derivatives) and interpolate them at the rest of the cell domain.

• The use of points derived from performing the DEIM
technique on snapshots of ROM residuals computed on the whole
domain.

• The determination of the elements through the previous study
of relative error maps between a pre-processed ROM solution and a
reference FOM solution.

The location of the DEIM points along the cell domain provides
very useful information about the complexity of the system solution
and thus, it can be assumed that it also provides relevant information
on the optimal positioning of the local error estimator probes. The
advantage of using these points for such purpose is that it does not
require any additional calculations. In order to justify the validity of
this approach, Fig. 7 shows the position of the first 20 DEIM points
obtained from the relative error maps that result of comparing the
solution of a pre-processed ROM with a reference FOM solution for
each system equation, consequently labeled. It also includes the

Figure 5. φs error (with respect to reference FOM solution) vs φs equation FEM residual of the solution of a pre-processed ROM built with the initial 5%
snapshots of the FOM solution. Distributions along the cell thickness for time t = 3500 s (a) and along time for mesh node ni = 15 (b).
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position of the DEIM points used by the pre-processed ROM to
interpolate the non-linearities (NL) of the problem. In both cases,
these points are mainly located near the current collectors and the
subdomain boundaries, denoted by vertical dotted lines in the figure.

The fact that most of the points concentrate in the anode of the cell
(from nodes 0 to 30) is directly related to the difference in
morphology and electrochemical properties between the electrodes
for the selected cell, which results in significantly stronger gradients
in the anode for most variables. The proximity of the points to
current collectors and subdomain interfaces is directly related to the
imposition of natural boundary conditions on the weak form of the
problem. Regarding φs, the much higher effective electronic con-
ductivity in the anode with respect to the cathode results in more
constant distributions in the first electrode, which imply that the
model will present larger relative errors in the cathode. This
particular behavior in the error maps is not very well identified by
the position of the NL DEIM points.

Therefore, it can be concluded that the DEIM points computed
for the interpolation of the non-linearities give a good approximation
to the optimal positioning of ROM error estimator probes, as long as
it is ensured that both electrodes are sufficiently represented.
Moreover, the obtained results show how the number of probes
used to estimate the overall ROM error can be reduced with respect
to the number of non-linearity DEIM points by simply hand-picking
a distribution of points that ensures that domain boundaries and
subdomain interfaces, as well as some interior points in both
electrodes, are represented.

Time-adaption strategy.—The strategy designed for the p2D
time-adaptive ROM following some ideas from Ref. 17 is illustrated
in Fig. 8, essentially consisting in the combination of:

Figure 6. Error (with respect to reference FOM solution), global and corrected local error estimators evolution in time of the solution of a pre-processed ROM
built with the initial 5% snapshots of the FOM solution. Electric potential in the solid (a) and electrolyte (b) phase, and lithium concentration at the surface of the
active particles (c) and in the electrolyte (d) at mesh element K = 15.

Figure 7. Location of the first 20 DEIM points of relative error fields vs
non-linearities of the system.
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• The initialisation of the simulation using the FOM, which
provides the first set of modes used to assemble the initial ROM.
These modes will be used to perform an initial adaption of the
database-build modes, if present, to better represent the actual cell
that is being simulated.

• The alternation of calls to the ROM and very brief calls to the
FOM during the time integration of the model. The latter are
produced when the ROM solution loses its accuracy, providing
enough information to include in the ROM and restoring the quality
of the ROM-solution.

As previously introduced, this strategy does not require a
database of FOM simulations. In fact, this is the main advantage
of the adaptive ROM proposed here. Nevertheless, in some cases
some information from the FOM may be available. This would be
the case during cell optimisation, since other cells would have been
simulated during previous optimisation iterates. Information from
these solutions (sharing the same cell chemistry but with different
design parameters and probably also subject to different applied
currents), if available, can also be used in the derivation of the initial
ROM (as shown in Fig. 8).

The evaluation of the accuracy of the ROM solution with respect
to the FOM requires the definition of one or more error estimators. A
strategy based on the definition of control parameters, such as error
estimator tolerances for each problem variable, relative tolerances
used to truncate the number of modes used for each variable as well
as mode-adaption parameters, has been developed to allow the
automated yet safe time integration of the adaptive model. These
control parameters are:

• Fraction of the (estimated) total simulation time that the initial
FOM will solve, t

fom
,0χ .

• Fraction of the initial FOM simulation time that the subsequent
calls to the FOM during the simulation will solve, fom

t,0
χχ .

• Fraction of the (estimated) total simulation time that the initial
ROM will solve, t

rom
,0χ .

• Maximum fraction of the (estimated) total simulation time that
any call to the ROM during the simulation will be allowed to solve,

t
romχ .
• Relative tolerance value for the ROM error estimator, ϵε̂. When

exceeded, the model will automatically return to the use of the FOM
for the prescribed number of iterations.

• Relative truncation tolerance for the SVDs performed in all
ROM assemblies, ϵsvd.

• Fraction of the database (if used), filtered by suitability to the
simulated case, used during the initial ROM assembly, χdb.

Finally, in order for the time-adaptive ROM to work, an
adaptation criteria needs to be defined. As introduced previously,
the modes used to construct the reduced model are adapted after

each FOM time-integration stage in order to maintain a proper
solution accuracy. The algorithm proposed in Ref. 17 is used to
update the modes basis. It consists in the application of POD to a set
of weighted vectors that combines the old modes, used in the
previous ROM time-integration stage, with the new modes extracted
from applying POD to the snapshots of the last FOM time-
integration stage. The weights used to combine the different vectors
are conveniently computed in order to eliminate the modes that are
not being used to represent the solution in the last ROM stage while
not enhancing the modes whose amplitudes have increased exces-
sively (which could destabilise the model).

Results

A methodology to build time-adaptive ROMs based on the DFN
model has been proposed above. As already mentioned and for the sake
of simplicity, the application of this methodology has been illustrated
using a p2D model, although its extension to p4D models is
straightforward. In this section, the proposed methodology will be
applied to several cases in order to confirm its robustness. In particular,
detailed results are discussed for a G-NMC cell under two loading
conditions: the previously introduced baseline case, consisting on a
0.5C full discharge, and a hybrid load cycle. In addition, cell voltage
curve results under several utilization conditions (charge and discharge
at different C-rates) are shown for both G-NMC and G-LFP cells.

In the present section, the fraction of simulated time where the
FOM is used within the time-adaptive strategy is presented as a
measure of simulation acceleration. The key idea that justifies the
use of this measure instead of actual simulation times is that the cost
of integrating the ROM in time is negligible when compared to the
FOM if the reduction of DOFs solved by the first with respect to the
latter is sufficient. Thus, the time-adaptive ROM strategy will ideally
provide a computational cost reduction factor equal to the inverse of
the fraction of the simulated time integrated by the FOM. In the case
of the presented p2D examples, the FOM solves a domain
discretised into 90 elements (30 per subdomain), resulting in a total
of 430 DOFs. For this particular discretisation of the problem, which
already results in a computationally inexpensive FOM, it can be
assumed that the ideal speed-up factor will not be achieved by the
time-adaptive strategy. However, the goal of these examples is not to
evaluate the actual simulation time reduction, but to illustrate the
accuracy and robustness of the proposed methodology through the
analysis of their results and the use of the presented simulation
acceleration measure. Additionally, results for a high-resolution p4D
case (where the use of a large number of mesh elements is justified
by the necessity to accurately represent three-dimensional effects)
are shown and simulation times are provided, validating the use of
the chosen simulation acceleration metrics on the p2D cases.

Appendix B contains all the data used to obtain the examples
presented here. Cell parameters (both morphological and

Figure 8. Time-adaptive ROM strategy.
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electrochemical) are given in Tables B·1 and B·2, while Table B·3
describes simulation parameters. The control parameters of the time-
adaptive strategy (as defined previously) used for all the simulations
corresponding to the results shown in this Section are presented in
Table III. The error estimator ε̂ for each variable is computed as a
simple moving average with a window of 10 time steps of the mean
value of the corrected local error eK computed at elements K= {0,
15, 29, 60, 75, 89} and following expression 20.

Lets consider first the simulation of the G-NMC cell discharge at
a 0.5 C-rate. Figure 9a shows the cell voltage (the main performance
indicator at a macroscopic level) of the implemented time-adaptive
model. As indicated in the legend of the figure, the curve
components in blue correspond to time periods where the solution

is computed using the FOM and those in orange to time periods
where the ROM is used instead. A reference solution, where the
FOM is used to compute the solution during all the cell utilization
period, is also represented as a black dashed curve in order to asses
the accuracy of the time-adaptive ROM. As it can be seen, the result
is in excellent agreement with the reference solution, obtained from
the numerical simulation of the FOM. The number of DOFs used in
the ROM after each update is specified in the plot, showing a very
important reduction when compared to the FOM. Also, note that the
number of time steps performed by the FOM represent a ∼10% of
the total simulated time, implying that an ideal speed-up factor of
∼10 could be achieved in an analogous p4D simulation.

As expected given the conservative selection of parameters in the
proposed methodology, the number of DOFs of the subsequent
ROMs after each adaption stage increases. However, the time
periods that the ROMs are able to integrate while maintaining the
error estimator values below the preset threshold also increase as the
number of DOFs increases, since the models have more information
about the solution of the problem and the adapted modes can
represent a larger range of the dynamics of the system. On the other
hand, Fig. 9b illustrates the evolution of the error estimators of each
variable in time, revealing how the solution deteriorates as the model
is integrated in time further away from the initial condition imposed
after each ROM adaption stage. Note how, generally, the rate at
which the error estimators grow in value decreases after each
adaption stage.

Figures 9c and 9d show the results of the application of this
methodology to the simulation of the cell now subject to a hybrid
cycle with C-rates of up to 2C (see Fig. B·2 of Appendix B).
Although this represents a much more complex utilization case
(involving completely different profiles for internal variables during
charge and discharges phases, and considering relatively high
currents), the performance of the time-adaptive ROM is quite similar

Table III. Time adaptive strategy control parameters.

Parameter Value

t
fom
,0χ [-] 0.05

fom

t,0
χχ [-] 0.25

t
rom
,0χ [-] 0.95

t
romχ [-] 0.95

ϵε̂ [-] 10−2

ϵsvd(φs) [-] 10−3

ϵsvd(φe) [-] 10−4

ϵsvd(cs) [-] 10−6

ϵsvd(ce) [-] 10−4

ϵsvd(jLi) [-] 10−6

svd jLi
ϵ β( ) [-] 10−6

svd ce
ϵ β( ) [-] 10−5

Figure 9. Voltage curve and ROM error estimator evolution corresponding to the simulation of the p2D time-adaptive ROM of a G-NMC cell for a constant 0.5
C-rate discharge, (a) and (b), and a hybrid cycle, (c) and (d).
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to the previous case. Agreement with the reference solution is again
excellent and the total simulation time fraction where the FOM is
used is only slightly higher than the one of the baseline case, with
the number of DOFs of the ROM being even smaller during some
time periods. Robustness of the proposed methodology is then
remarkable, especially considering that the same selection of
parameters is used in all the examples.

A closer look into the results provided by the time-adaptive ROM
is now taken. So far, accuracy has been assessed only using the cell
voltage. Now, prediction of internal variables is also considered. For
the sake of brevity, only the G-NMC 0.5C discharge and hybrid
loading cycle are presented. Figure 10 shows how the time-adaptive
ROM solution provides distributions along the cell thickness of the
different variables of the problem that accurately represent the
reference FOM solution in both cases, even for times where some of
the error estimators are about to reach the threshold value,
manifesting the robustness of the chosen estimators and time-
adaptive strategy control parameters.

Additionally, Fig. 11 shows how the lithium-ion exchange
current density and concentration gradient in the electrolyte, which
present more complex distributions along the cell thickness and
typically require a larger number of modes than the rest of variables
of the problem, are also represented with satisfactory precision. As it
can be seen, the model successfully reproduces the more demanding
profiles of the hybrid load cycle, where more complex dynamics
have been excited and the corresponding distributions for the chosen
time (where the applied current is 2C) present higher orders of

magnitude for these two fields with respect to the baseline 0.5C
discharge case.

In order to complete the analysis of the proposed methodology,
higher charge and discharge currents are considered. Since electrode
utilization is more and more heterogeneous as the cell is subject to
higher currents, these high current cases result in more challenging
tests for the time-adaptive ROM. But, as shown here, the proposed
time-adaptive ROM also proves to be efficient and accurate for
higher charge and discharge rates across different cell chemistries
and configurations. Figure 12 represents the voltage curves of the
time-adaptive ROM and the reference FOM solution for C-rates of
up to 5C for both G-NMC and G-LFP cells. Clearly, this figure
depicts a very good agreement with the reference solution in all the
considered cases.

Finally, results of the application of this methodology to the p4D
case are shown. This is, as explained, the ultimate goal of this
development. For that purpose, the open source p4D model
cideMOD, presented in Ref. 23, has been used as the FOM within
the time-adaptive strategy implementation, and also to generate the
reference solution. Figure 13a shows the time-adaptive p4D ROM
voltage curve for a 0.5C full discharge of a G-NMC cell, which
directly corresponds to the p2D case presented earlier in Fig. 9a.
Additionally, Table IV summarises model discretisation and perfor-
mance information for the p4D case, including simulation times. It
can be seen how the quality of the approximation with respect to the
reference solution is comparable to the one provided by the time-
adaptive p2D implementation, and so is the fraction of time

Figure 10. Distributions of variables of the problem along the cell thickness for the solution of the p2D time-adaptive ROM of a G-NMC cell under 0.5 C-rate
discharge (see Figs. 9a and 9b) and hybrid load cycle (see Figs. 9c and 9d) conditions with respect to their corresponding FOM reference solutions at times
t = 4000 s and t = 3000 s, respectively.
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simulated by the FOM using the same time-adaptive strategy control
parameters. In this case, this fraction (10.47%) results in a simula-
tion acceleration factor of 9.39 which is, as expected for a p4D case,
remarkably close to the ideal acceleration factor of 1/0.1047= 9.55,
hence justifying the use of the fraction of simulated time solved by
the FOM as a measure of simulation acceleration in the analysis
shown above. It can also be noted how the DOFs in the FOM (linked
to the geometry description) increase by several orders of magnitude
(see Fig. 13b for a 3D representation of the p4D case mesh), while
the number of DOFs in the ROM (related instead to the solution
dynamics) only increase slightly in comparison to the analogous p2D
case.

Conclusions

An efficient and robust methodology has been developed for the
construction of a time-adaptive ROM for the p2D electrochemical
model obtained by Newman and co-workers in Ref. 5. The
development of this more effective time-adaptive strategy is not
straightforward because of the inherent intricacy of the electroche-
mical problem. Its complex behavior requires both a careful analysis
to select the relevant modes that describe the dynamics of the system

and the introduction of efficient error estimators, which are more
involved than those used in adaptive models for simpler problems.

Regarding mode selection, our analysis deals with critical aspects
of the p2D DFN model, characterised by a strong dependence of its
dynamics on the non-linear function describing the Butler-Volmer
kinetics. In particular, we establish a new truncation criterion to
determine the number of modes required to account for small
fluctuations in certain variables, such as φs and ce, which turn out
to be very important for accurately representing the FOM solution.
Another key aspect of the problem, which may dramatically affect
convergence of the ROM, is related to the numerical techniques used
to solve the p2D DFN model. The use of mixed finite element
methods in the FOM (resulting from the introduction of the
exchange current, jLi, as a problem variable) allows for the modes of
jLi to be obtained from two sources: the left singular vectors
corresponding to the variable jLi in the FOM itself, and the
evaluation of the Butler-Volmer kinetics expression using the
remaining variables of the problem and leading to a set of left
singular vectors f jLi

. As it has been shown, the latter approach is the
most robust for solving the ROM. On the other hand, the selection of
good error estimators is a crucial ingredient for building an efficient
time-adaptive ROM. We extend the first approach based on local
residuals in Ref. 17 by implementing an inexpensive strategy using
implicit a posteriori error estimators, which overcomes the difficul-
ties that prevent the correlation of local errors with residuals, and can
be included in an automatic ROM-adaptation device. Thus, the
presented low-cost error estimation approach within the time-
adaptive strategy constitutes a key feature regarding the industrial
applicability of the model. Finally, the results obtained for various
scenarios having different charge/discharge C-rates, ranging from
constant values up to 5C to a hybrid case with rates up to 2C, show
that the proposed time-adaptive methodology is efficient, robust and
provides accurate results for both cell voltages and internal
variables. The analysis, as well as the clarification of the critical
aspects of the p2D DFN model, show the time-adaptive strategy
presented in this article to be a clear step forward with respect to the
available results in the literature obtained from pre-processed ROMs
and, to the best of our knowledge, is the first time such an adaptive
method has been applied to electrochemical problems.

Although the development of this technique has been imple-
mented in the p2D DFN model, all the analysis carried out is
perfectly applicable to the p4D case, where the benefits of a
reduction in the number of DOFs is even more self-evident and
therefore the speed-up factor increases significantly, as shown by the
results presented for a p4D implementation. On the other hand, in
the framework of cell optimisation tasks, time-adaption techniques
can be combined with parameter-adaption ones in order to further
speed-up numerical simulation through model order reduction
techniques. As optimisation proceeds, derived ROMs will need
less updates from the FOM (since more information from the model
is available from previous simulations) and the total computational
cost of the optimisation process is expected to be comparable to the
computational cost of a cell simulation using the FOM, making cell
optimisation based on detailed p4D models affordable.

Figure 11. Distributions of lithium-ion exchange current density and
concentration gradient in the electrolyte along the cell thickness for the
solution of the p2D time-adaptive ROM of a G-NMC cell under 0.5 C-rate
discharge (see Figs. 9a and 9b) and hybrid load cycle (see Figs. 9c and 9d)
conditions with respect to their corresponding FOM reference solutions at
times t = 4000 s and t = 3000 s, respectively.

Table IV. Time-adaptive p4D ROM and reference FOM compar-
ison. Computational times have been obtained using the processor
Intel® CoreTM i9-10900 CPU @ 2.80 GHz × 20.

Reference FOM Time-adaptive ROM

Number of mesh elements 197967
Number of mesh nodes 36902
Number of DOFs 182167 {39, 46, 53, 62, 70}
Simulated time [FOM/ROM] 100%/0% 10.47%/89.53%
Simulation time [hours] 34.08 3.63
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Two software tools have been developed by the authors
implementing such techniques for p4D cell models: echROM for
the acceleration of the numerical simulation using a time-adaptive
ROM, and OptiBat for the implementation of cell optimisation
algorithms using time- and parameter-adaptive ROMs. Both tools

are distributed using a Free Open Source Software (FOSS) license
and are available at https://defacto-project.eu/time-
adaptative-reduced-p4d-tool/and https://de-
facto-project.eu/defacto-rom-optimisation-
tool/, respectively. Currently, in addition to the application of the

Figure 12. Voltage curves as a function of the cell state-of-charge (SOC) of the p2D time-adaptive ROM simulations for G-NMC and G-LFP cells at different
discharge (positive) and charge (negative) C-rates.

Figure 13. Voltage curve of the p4D time-adaptive ROM simulation of a G-NMC micro-cell at a constant 0.5C discharge rate (a) and 3D representation of the
domain discretisation (b).
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developed tools to the optimisation of the design of a real cell, some
improvements for these tools are being considered. In particular, the
use of a global error estimator instead of local error estimators
(making unnecessary the calibration step explained in the paper) and
the implementation of some alternatives concerning the stabilisation
of the ROM will be included in future software releases.
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Appendix A. POD-based ROM Formulation

• In the matrix form of the charge conservation in the solid phase
equation, each kji

sϕ element of the K N N
s

s s∈ϕ
×ϕ ϕ matrix is computed as
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• In the matrix form of the charge conservation equation in the
electrolyte, each kji
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• In the matrix form of the mass conservation equation in the
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• In the matrix form of the Bulter-Volmer kinetics equation, each
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Appendix B. G-NMC and G-LFP cell and simulation parameters

Figure B·1. Open circuit voltage curves for the active materials G,24 NMC25

and LFP.27
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